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Abstract. Distributed sequential computing (DSC) is computing with
distributed data using a single locus of computation. In this paper we ar-
gue that computation mobility—the ability for the locus of computation
to migrate across distributed memories and continue the computation
as it meets the required data—facilitated by mobile agents with strong
mobility is essential for scalable distributed sequential programs that
preserve the integrity of the original algorithm.
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1 Introduction

Sequential computing will never disappear, even in distributed environments.
There are at least three reasons for this. First, only very few algorithms (referred
to as “embarrassingly parallel”) can be perfectly parallelized. In fact, Amdahl’s
law tells us that the sequential portions in a parallel program often become bot-
tlenecks for speedup, so we need to pay special attention to them. Second, when
solving problems on distributed-memory systems, programmers may choose to
decompose a problem into coarse-grained sequential sub-tasks that run in paral-
lel, even if fine-grained data parallelism is an option [1]. Third, although parallel
compilers can sometimes do a good job of translating sequential code to parallel
code, not all auto-translations are viable and in many cases human intervention
is unavoidable [2]. Re-implementing an algorithm in parallel can require a major
programming effort. In some cases, significant performance improvement can be
achieved without this additional programming effort by running the sequential
algorithm in a distributed environment to solve large problems and avoid the
performance penalty from disk thrashing [3, 4, 5]. We define distributed sequen-
tial computing (DSC) as computing with distributed data using a single locus
of computation.

The key to scalability in distributed high performance computing is reduc-
ing the amount of data being moved. The classical distributed shared mem-
ory (DSM) systems cannot address this issue efficiently and nicely, therefore
they cannot fulfill the initial expectations after almost 15 years of research [6].
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Not willing to give up the convenience of “reading and writing remote memory
with simple assignment statements” [7], researchers tried to exploit data local-
ity in later improved DSM-based systems or compilers, such as HPF [8, 9] and
UPC [7, 10], by following the general principle of “owner-computes” [11]. The
principle states that computations should happen on the processor that owns
the value that is being assigned to. The use of this principle in HPF or UPC is
somewhat limited: a programmer can only exercise “owner-computes” by first
specifying data distribution pattern and then using new language constructs such
as forall. Strict adherence to the principle of “owner-computes” as articulated
above does not always minimize data movement. For example, in an assignment,
if the right-hand-side (RHS) objects are large in size and distributed, instead of
all the RHS objects being sent to the owner of the left-hand-side (LHS) object
for computation, the result could instead be computed on the home processor
of the RHS objects and then sent to the owner of the LHS object for assign-
ment. This would reduce the amount of communication required. In this paper,
we will reuse the term “owner-computes” but extend the meaning to be “owner
process/thread of large sized data computes” and the scope to be code building
blocks that can have one or more assignments.

The goal of “owner-computes” in our extended sense is to minimize com-
munication cost. The message passing (MP) approach, as exemplified by MPI,
follows the rule strictly, which is why it is efficient and scalable, and hence popu-
lar in the high-performance commercial software market [12]. However, MP has
moved a step too far, which makes it hard to use. MP is “too local” in two ways.
First, MP programmers usually have only a “local view” of the distributed data,
rather than a global view from which the “original algorithm” (the sequential or
PRAM [13] algorithm) is developed [1]. This is because the data reference (e.g.,
array indexing) is local to a distributed data piece that is owned by a process.
Second, moving the locus of computation from one “local process” to another in
MP is cumbersome since it usually requires artificial constructs and synchroniza-
tion. The inconsistency in data view and the additional programming required
to support the transfer of computation locus can cause the MP implementation
to look dramatically different from the original algorithm.

Moving computation locus across memory boundaries is unavoidable if we
follow the rule of “owner-computes” in distributed memory. This observation
is an immediate consequence of the following two basic facts: (1) in order for
a computation to be performed on a data item, the data item and the locus
of computation need to be together; and (2) the “owners” of distributed data
pieces change across memory boundaries. We define computation mobility as
the ability for the locus of computation to migrate across distributed memories
and continue the computation as it meets the required data. This migration is
controlled by a programmer either explicitly or implicitly through data distri-
bution. Mobile agents that provide strong mobility [14] are a means to facilitate
computation mobility. If the computation mobility in a distributed sequential
program is implemented using a mobile agent system, we call this type of com-
puting mobile-agent-based DSC. One subtle but important point is that mobile-
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agent-based computation mobility does not necessarily mean code has to move.
In fact, a careful implementation of the underlying agent infrastructure allows
code to either be loaded from a shared disk or, in a non-shared file system, to be
sent across the network at most once, irrespective of how many times the locus
of computation moves across the network [15]. This is crucial to performance.
Strong mobility in our mobile agent system means that execution state but not
always code is allowed to migrate.

One immediate application of DSC is to utilize the power of a network of
workstations to improve the performance of data-intensive sequential programs
without re-programming them. This is based on the observation that under cer-
tain circumstances partitioning the data onto different machines and reducing
the disk paging overhead by using the collective memory of a network of work-
stations can result in considerable performance increase, without converting the
underlying algorithm to a parallel implementation. One way of utilizing the
distributed memories is the “remote memory paging” or “network RamDisk”
approach [4, 5], a special case of DSM, in which a process runs on a single ma-
chine and accesses data remotely. A major disadvantage of this approach is its
nonscalability because the rule of “owner-computes” is clearly violated here. An-
other approach is to use the mobile-agent-based DSC approach [3]. The data is
distributed over the workstations in the network just as in the “remote memory
paging” approach. The difference is that rather than having the program run on
a single machine and remotely access the data, the computation, using a mobile
agent as a vehicle, moves to the data. As computation locus, carried by a mobile
agent, moves to each piece of the distributed data, it dynamically becomes the
owner of large sized data and therefore the rule of “owner-computes” is always
followed.

In this paper, we argue that computation mobility facilitated by mobile
agents with strong mobility is not only a good way to implement DSC, but
also the right way. Of course, anything that can be done with mobile agents can
be done with MP: after all, at low level mobile agents are ultimately streams of
bytes and hence messages. But mobile-agent-based DSC provides a new layer of
abstraction that helps to improve programmability in two ways. First, a DSC
program implemented as a mobile agent preserves a global view of the problem
data through shared variable programming [16]. The distributed data is bridged
by mobile agents at the application level. Second, mobile-agent-based DSC elimi-
nates the need of manually adding artificial auxiliary threads, and handling state
transfer and synchronization among the real and the auxiliary threads. This ob-
servation, that mobile agents simplify the programming task by eliminating the
necessity of explicitly maintaining the state of the processes or threads, has been
previously articulated elsewhere [17].

The rest of the paper is organized as follows. Section 2 compares, using a sim-
ple and abstract example, the different ways mobile agents, MP, and DSM would
bring computation locus and data together sequentially in distributed memory.
Section 3 describes a real application, Crout factorization, and its different im-
plementations. The last section contains some final remarks.
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Fig. 1. Data and computation rendezvous. (a) The problem. (b) The classical
DSM approach. (c) The MP or improved DSM approach. (d) The mobile agent
approach

2 Bringing Together Data and Computation

A sequential program consists of code building blocks, which may be nested
or may follow one another sequentially. We use the notation BT(D) to denote
a code building block of type T that performs its computation on a collection
of data pieces denoted by D. The type T of a code building block can be any of
the basic programming constructs such as a loop, an if statement, a multi-way
conditional statement (e.g., a switch/case block), or a sequence of statements.
The collection of data pieces D represents the data (input, output, intermediate
data) used in the execution of the code building block. When the data pieces in
the collection D are distributed over disjoint memories, BT(D) is called a dis-
tributed code building block , or a DBlock . DBlocks are the natural constructs to
consider when performing sequential computation using distributed data; indeed,
converting code building blocks into DBlocks is the fundamental problem that
must be solved when turning a sequential program into a distributed sequential
program. As the problem scales up, more code building blocks in a program be-
come DBlocks, and the data in DBlocks are distributed across more memories.
Hence the ability to handle DBlocks in an efficient and consistent way is the key
to scalable distributed sequential computing.

Consider a DBlock BT(i, A), where i is a relatively small data piece and A
is large. A and i could be from different variables (e.g., if i is the data stored in
a loop index variable and A is a matrix or a portion thereof), or they could be
from the same variable (e.g., if i is a column of a matrix and A is a portion of
the same matrix that consists of a large number of columns). Suppose that the
data pieces i and A are distributed as shown in Fig. 1(a). BT(i, A), executed by
Thread x, needs to bring together these two data pieces to continue the compu-
tation. There are several ways of doing this. These are shown in Fig. 1(b)-(d),
where in each case the highlighted thread is the one that continues the computa-
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tion, and the dotted arrows indicate a transfer of locus of computation, data, or
synchronization. The classical DSM approach is shown in Fig. 1(b). Thread x,
which is stationary, pulls data A to meet with data i and itself. This causes more
data than necessary to be moved, and violates the rule of “owner-computes.”

The approach used by MP and by improved DSM systems such as HPF or
UPC is illustrated in Fig. 1(c). Since only stationary threads are available, the
programmer creates an artificial auxiliary process or thread, Thread y in the fig-
ure, to handle the computation after the transfer of the computation locus. The
transfer of the computation locus from Thread x to Thread y requires data pass-
ing and synchronization. In some cases, the data i can be redundantly computed
on all processors, eliminating explicit data passing but requiring each thread
to create and maintain additional state data, and an explicit synchronization.
(For example, a loop can be run on all processors to redundantly compute the
value i, and an artificial mask, in the form of an if statement, can be used to
identify the owner process of data A. This is the SPMD programming style; the
if statements are the way SPMD creates auxiliary threads.) In other cases, syn-
chronization can be performed implicitly via explicit data passing. It is worth
noting that the forall construct in HPF or UPC is designed for data parallel
loops (i.e., loops in which iterations can be done concurrently) rather than for
constructing a sequential loop that spans distributed memories.

The mobile agent approach to implementing a DBlock is shown in Fig. 1(d).
The thread performing the computation “bundles” the data i into a local agent
variable, which it then carries to MEM 2 to perform the computation. This is not
only efficient (because the agent thread becomes the owner of the large data A
before it computes, without moving this data) but also natural to a programmer,
because the rendezvous of computation locus and data is seamless.

At the level of abstraction appropriate for algorithm design, a DBlock is no
different from a non-distributed block: the data is manipulated by the single com-
putation locus. The requirement that computation and data be brought together
is imposed by the distributed environment and the size of the problem being
solved, since data is distributed across disjoint memories as the problem scales
up. Thus the integrity of the algorithm is best preserved by bringing computa-
tion and data together via intra-thread data carrying rather than inter-thread
data passing. Mobile agents with strong mobility provide a layer of abstraction
that helps this to happen in a seamless and consistent fashion. At a low level,
mobile agent code is generally compiled down to stationary threads passing data
between them. By programming at the mobile agent level rather than the MP
level and letting a compiler do the translation, the programmer avoids a tedious,
time-consuming, and error-prone translation task. In the next section, we will
provide an example illustrating how programming at this level of abstraction
can help with a real-world application.
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(1) For j = 1 to N

(2) For i = 2 to j − 1

(3) Kij ← Kij −
∑i−1

l=1
KliKlj

(4) End For

(5) For i = 1 to j − 1
(6) T ← Kij

(7) Kij ← T
Kii

(8) Kjj ← Kjj − TKij

(9) End For
(10) End For

(a)

(1) For j = 1 to N
(1.1) load column j
(2) For i = 2 to j − 1
(2.1) hop to column i
(2.2) load Kii

(3) Kij ← Kij −
∑i−1

l=1
KliKlj

(4) End For

(4.1) hop to column j
(4.2) unload column j

(5) For i = 1 to j − 1
(6) T ← Kij

(7) Kij ← T
Kii

(8) Kjj ← Kjj − TKij

(9) End For
(10) End For

(b)

Fig. 2. Pseudocode for Crout factorization. (a) The sequential implementation.
(b) The mobile-agent-based DSC implementation

3 Distributed Sequential Crout Factorization

In this section, we describe one example, Crout Factorization, for which perfor-
mance data is provided in our other paper [3]; here the focus is on why, once
we have decided to use DSC, the mobile-agent-based DSC approach is better
than MP. In essence, Crout Factorization is a method of factoring a symmetric
positive-definite N×N matrix K into the product of three matrices K = UT DU,
where U is an upper triangular matrix with unit diagonal entries and D is a di-
agonal matrix. Typically, K is a sparse banded matrix, meaning that entries that
are more than a fixed distance b, called the half-bandwidth, from the diagonal
are 0. Figure 2(a) shows the pseudocode for Crout factorization. In line (3), the
summation over l corresponds to a dot product of two sub-vectors of columns i
and j. These are the two shaded vectors in Fig. 3(a). The computation of col-
umn j depends on previously computed columns. The “working set” of matrix
entries required to compute column j is shown shaded in Fig. 3(b).

When the size of the working set exceeds the size of the main memory on
a single workstation, extensive paging overhead occurs. This thrashing can be
eliminated by using the mobile-agent-based DSC implementation of the algo-
rithm [3]. The idea is to split the matrix into pieces, where each piece is a con-
tiguous set of columns. The size of the piece is chosen so that each piece can fit
into the main memory of one workstation. The algorithm runs on P worksta-
tions, where P is the number of pieces that comprise K. Figure 3(c) shows an
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Fig. 3. Crout factorization: (a) Computing of Kij requires the dot product of the
two shaded vectors. (b) Working set for column j. (c) Working set decomposition

example for which the working set is subdivided into three pieces. The arrows
indicate how an agent, carrying column j which it is computing, would move
through the pieces of the working set.

When the size of the working set, which is problem dependent, is too large
for a single workstation, pulling the entire working set to a single stationary
process, as done in the “remote memory paging” or DSM approach, would not
only require much more data to be transferred, but also cause “remote memory
thrashing” instead of “local disk thrashing,” if “least recently used” is the un-
derlying protocol for handling paging. This is because the data access pattern,
shown with arrows in Fig. 3(c), is such that columns are paged out of the (local)
main memory right before they are going to be used.

The mobile-agent-based DSC implementation of Crout factorization is shown
in Fig. 2(b). The only difference between this code and the sequential code is
that two hop statements and three load/unload statements are inserted. These
statements are navigational annotations telling the computation which node to
hop to (given a column index) and what data to load or unload. They do not
modify the structure of the existing sequential algorithm; in other words, they
preserve algorithmic integrity. Although there are a large number of hops, most
of them will be local and hence will be no-ops with negligible cost. The load
statements involve copying a single column (at line (1.1)) or a single matrix
entry (at line (2.2)) into agent variables. Once the new values of column j have
been computed, by the agent visiting the nodes that contain the pieces of the
working set, they are unloaded, or copied back into the appropriate location on
the node storing column j by the unload statement at line (4.2).

There are two DBlocks that we focus on in our implementation shown in
Fig. 2(b). The first one is Bfor({j}, {Klj}) which includes lines (1)–(10). In this
DBlock, the data {Klj} is column j of matrix K which is much larger in size than
data {j} which holds the loop index variable. The variable j is an agent variable,
thus the data {j} can follow the computation locus and meet column j wher-
ever the column resides. The second DBlock is Bfor({i}, {j}, {Klj}, {Kii}, {Kli})
which consists of lines (2)–(4) (the loop that computes dot product of columns j
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(1) For k = 1 to P
(2) If (µ == k) Then
(3) For j = Ik to Ik+1 − 1
(4) Send (k − 2, col j)
(5) Recv (k − 1, col j, {Kdd})
(6) For i = Ik to j − 1
(7) Kij ← Kij −

∑i−1

l=1
KliKlj

(8) End For

(9) For i = 1 to j − 1
(10) T ← Kij

(11) Kij ← T
Kii

(12) Kjj ← Kjj − TKij

(13) End For
(14) End For

(15) Else If (µ == k − 2) Then
(16) For m = Ik to Ik+1 − 1

(17) Recv (k, col j)
(18) For i = Ik−2 to Ik−1 − 1
(19) Kij ← Kij −

∑i−1

l=1
KliKlj

(20) End For
(21) Send (k − 1, col j, {Kdd})
(22) End For

(23) Else If (µ == k − 1) Then
(24) For m = Ik to Ik+1 − 1
(25) Recv (k − 2, col j, {Kdd})
(26) For i = Ik−1 to Ik − 1
(27) Kij ← Kij −

∑i−1

l=1
KliKlj

(28) End For
(29) Send (k, col j, {Kdd})
(30) End For
(31) End If
(32) End For

Fig. 4. Pseudocode for Crout factorization using MP or improved DSM

and i). In this DBlock, the data {i} is the value of the loop index variable i, an
agent variable similar to variable j. The data {Klj} is a copy of column j in an
agent variable represented by Kij and Klj (at line (3)). The data {Kii} is the
diagonal entries of K loaded in an agent variable Kii (at line (2.2)). The data
{Kli} is the working set of column j. It is the largest sized data in this DBlock,
and is distributed in node variable Kli. In the second DBlock, the data pieces
{i}, {j}, {Klj}, and {Kii} are carried to meet with {Kli}. Lines (5)–(9) (the
loop that does scaling of column j with diagonal entries {Kii}) make a code
building block that would run on one workstation, for each value of j, with all
data local, and hence they do not make a DBlock. In this code building block,
Kij and Kjj are node variables, and Kii is the same agent variable as the one
in line (2.2).

It is of course possible to implement Crout factorization using MP-based
DSC. Figure 4 shows the pseudocode. Notice that this pseudocode is only at
a high level, and some details, e.g., the boundary cases of k, are left out. In the
pseudocode, µ is the process ID, which is defined as the index of a matrix piece
that a processor owns. Ik is the index of the first column that piece k owns. And
{Kdd} is a vector of diagonal entries. If we compare the MP implementation
shown in Fig. 4, with the original algorithm shown in Fig. 2(a), the differences
are considerable. Producing the MP version requires carefully analyzing and
explicitly handling the “roles,” or states of various processes using artificial if
masks. These masks artificially cut a DBlock into sub- code building blocks that
belong to different processes. These sub-blocks are each code building blocks, but
no longer DBlocks, because they only work on data that is local (the received
messages are buffered locally). In Fig. 4, code lines (6)–(8), (18)–(20), and (26)–
(28) used to belong to the same code building block in the original algorithm
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(lines (2)–(4) in Fig. 2(a)), or the agent code (lines (2)–(4) in Fig. 2(b)), but they
are broken up by MP into different sub-blocks, as the original code building block
grows with the problem size to become DBlocks. In contrast, mobile-agent-based
DSC implementation handles this block transition seamlessly and consistently
through intra-agent data carrying. A local view of distributed data pieces is used
in MP, which is reflected by the fact that each process only runs loops over the
columns it owns, as it updates only its own data. Both the local data view and
broken DBlocks in MP implementation contribute to the change of the high-level
structure of the original algorithm, which significantly complicates the task of
new code development as well as old code maintenance.

4 Final Remarks

We have demonstrated in this paper that DSC is a natural fit with mobile agents
and a very poor fit with MP, which is a lower level approach to distributed com-
puting. As mentioned in the introduction, one reason why DSC is important is
that a parallel problem using distributed data can be decomposed into a collec-
tion of cooperating subtasks, each implemented using DSC. An example of this
is presented in a companion paper [18].

One advantage of DSM is that it supports incremental parallelization of se-
quential programs [1]. This is because sequential programs can be ported to
a DSM system without much efforts. Once this initial porting is complete, the
programmer can incrementally re-implement portions in parallel. Our mobile-
agent-based distributed computing offers the same advantage for essentially the
same reason: because of algorithmic integrity, transforming a sequential program
to a DSC program is straightforward.

The introduction of DBlocks in Section 2 gives some insight into the nature
of the programming tasks using DSM, MP, or our mobile-agent-based approach.
With classical DSM, DBlocks are handled completely transparently as if they
were not distributed blocks at all. This is extremely convenient, but it comes at
a steep price: scalability is lost because the “owner-computes” rule is violated. In
MP or improved DSM, DBlocks are broken into code building blocks belonging
to different processes. The “owner-computes” rule is followed, but the original
code structure is changed significantly. In our approach, blocks that are not dis-
tributed are coded exactly as they are in the original code, while DBlocks are
annotated with navigational commands but otherwise preserve their code struc-
ture. As the problem size increases, more code building blocks are turned into
DBlocks, and more navigational commands are therefore inserted. This provides
a natural migration path along which programs can evolve to solve increasingly
large problems.
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